LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - November 2009

CH 3504 - THERMODYNAMICS

Date & Time: 09/11/2009 / 9:00 - 12:00 Dept. No. Max. : 100 Marks

PART - A

Answer ALL questions.

 $(10 \times 2 = 20 \text{ marks})$

- 01. What are State functions? Give examples.
- 02. What are intensive and extensive properties?
- 03. Define bond energy. What does a positive value of bond energy indicate?
- 04. Explain heat of transition with a suitable example.
- 05. State Trouton's rule.
- 06. What is Gibbs free energy?
- 07. State the law of mass action.
- 08. At a given temperature, the equilibrium constant K_c for the reaction $3C_2H_{2(g)} \leftrightarrow C_6H_{6(g)}$ is 4, If the equilibrium concentration of C_2H_2 is 0.5 mol lit⁻¹, what is the equilibrium concentration of C_6H_6 ?
- 09. How would the equilibrium reaction of dissociation of PCI₅ is affected by
 - (a) addition of Cl₂ (b) decreasing the volume of the container
- 10. What is meant by recidual entropy?

PART – B

Answer any EIGHT questions.

 $(8 \times 5 = 40 \text{ marks})$

- 11. (a) Differentiate between reversible and irreversible processes.
 - (b) Write the mathematical form of first law of thermodynamics and explain the terms.
- 12. One mole of an ideal gas (mono-atomic) at 27°C expands adiabatically against a constant external pressure of 1 atm from a volume of 10 dm^3 to a volume of 20 dm^3 . Calculate (i) q (ii) w (iii) ΔU and (iv) ΔH for this process. Also calculate the final temperature of the gas. Assume that $C_v = 3/2 \text{ R}$.
- 13. Derive the Kirchoff's equation and mention its applications.
- 14. The enthalpy of combustion of glucose $C_6H_{12}O_6(s)$ is -2816 kJ mol⁻¹ at 25°C. ΔH^o_f values for $CO_2(g)$ and $H_2O(l)$ are -393.5 and -285.9 kJ mol⁻¹, respectively. Calculate the enthalpy of formation of glucose.
- 15. How will you determine the calorific value of a substance using bomb calorimeter?

- 16. Derive any two Maxwell's relationships.
- 17. Derive Gibbs Helmholtz equation. Give its application.
- 18. Derive thermodynamic equation of state.
- 19. Explain why it is permissible to omit the concentrations of pure solids and liquids in calculating K_c for a heterogeneous reaction.
- 20. Discuss the effect of change of temperature, pressure and concentration in the contact process of manufacture of sulphuric acid.
- 21. Show that $\Delta G^{\circ} = -RT$ K_{p}
- 22. Explain the Nernst heat theorem.

PART - C

Answer ANY FOUR questions.

 $(4 \times 10 = 40 \text{ marks})$

- 23. a) Explain the Hess law of constant heat summation. Discuss its applications.
 - b) Define C_p and C_v . Derive the relationship between them for an ideal system.
- 24. a) What is Joule-Thomson coefficient? Deduce the relationship between μ_{JT} and C_{p} .
 - b) Explain the integral heat of solution and dilution.
- 25. a) Discuss the Carnot's cycle for establishing the maximum convertibility of heat into work.
 - b) Heat supplied to a Carnot engine is 1897.8 kJ. How much useful work can be done by the engine which works between 0°C and 100°C?
- 26. a) Discuss the effect of change of temperature, pressure and concentration in Haber process.
 - b) The dissociation of PCI₅ was studied at 229°C at a total pressure of 1 atm. The value of K_p was found to be 0.460 atm. Calculate the degree of dissociation of PCI₅. If keeping the temperature constant, the pressure on the system is raised to 10 atm, what will be the degree of dissociation?
- 27. Derive Van't Hoff equation showing the variation of equilibrium constant with temperature.
- 28. a) State the third law of thermodynamics.
 - b) How absolute entropy of a substance is determined using third law of thermodynamics?